
January 16th
Vectorization, Visualization and Numerical Differentiation/Integration

Tutorial info & Contact info

Hugh Podmore Website
podmore@yorku.ca nanosatellite.lab.yorku.ca/teaching/phys2030

Tutorials will consist of

• Some lecturing / review of course material.

• A series of small worked examples and one “big” one based on recent
course material.

• A Q&A / help period.

• Tutorials are 3 hours.

mailto:podmore@yorku.ca
nanosatellite.lab.yorku.ca/teaching/phys2030

Starting problem – Matrix Multiplication

• Compute the product of two matrices, C = AB where

• 𝐴 =
3 1 4
0 2 1
5 1 0

 • B=
1 0 3
0 0 3
0 2 4

Vectorization

• Matlab is built around PROCESSING VECTORS

• Consider these two programs:

• They do the same thing (which is…?). Question: what’s the point?

function [results] =

two_powers_iterate(N)

 tic

 results = zeros(1, N);

 for i = 1:N

 results(i) = 2^i;

 end

 toc

end

function [results] =

two_powers_vectorized(N)

 tic

 powers = 1:1:N;

 base = zeros(size(powers));

 base(1:end) = 2;

 results = base.^powers;

 toc

end

Vectorization

• For very large operations vectorization can be more efficient
 (think N = 109 doubles * 4 bytes / double = 4 Gb of data)

• Worth thinking about when
processing large quantities
of data.

• A “full” image taken by JWST
would be about 250Mb.

-Something like SKA or ALMA…?

Special Vector Syntax

• Suppose we have two vectors x_vec, y_vec

* : x_vec*y_vec  vector/matrix multiplication (watch dimensions!)

.*: x_vec.*y_vec  per element multiplication (ie: *x1*y1, x2*y2…+)

‘ : x_vec’  x_vecT ie: transpose

Many built-in Matlab functions support vector input. Ex: cos() & sin().

 Vectorization Exercise

• Exercise: Write a VECTORIZED function (no loops of any kind!) that
does the following:

Take a vector of numbers (in degrees),

1. convert them to radians

2. compute their sine values.

3. get the absolute values and

4. sum all these numbers together and return the result.

Challenge: do it without using the Matlab functions abs() and sum()

• We can quickly define generic functions using function handles “@(x)”

xpts = -5:0.1:5;

F1 = @(x) 5 .* exp(-x.^2);

ypts = F1(x);

• And Plot them using the fplot function

plot(xpts,ypts,’.’);

hold on

fplot(F1,[-5 5],’r’);

Function handles

Important: This is just a fast way to define functions! Matlab treats
these the same as functions made using the function command.

• Using a function handle, make a function which displays “hello world”
regardless of the input

Visualization

• There are a number of built-in
functions for visualization in Matlab

• Use the help function to see how
each of the following is useful

• plot

• fplot

• hist

• rose

• surf

• contour

• quiver

• The peaks function generates
a sample 2D scalar function

• Try plotting peaks(50) with

the surf and contour functions

Exercise: Generate two 1x1000 vectors using rand(1,1000) and
randn(1,1000).

• Using one of the visualization functions from the previous slide, show
the difference between the data generated by each.

• Think of cases where rand and randn would be useful

Numerical Differentiation

•Question: can we take the derivative of a set of
discrete data (without knowing the function

beforehand)?

 • First guess, simple “rise over run”

•
𝑑𝑦

𝑑𝑥
≈
Δ𝑦

Δ𝑥
=
y2−y1

x2−x1

• This approximation is more
accurate for closer points.

• How do we know that?

• Compare to the definition of a
derivative:

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ

• We need to choose
which x-values we
associate with the
derivative; the left value,
right value or midpoint?

Exercise: Generate a set of points using the sin() function.

Use the diff function to calculate the derivative. Compare your results
to the expected analytical value (which is?...)

Centered differences

• We can improve our estimate
by considering points to the
left and right of the point in
question

• Why would this improve our
estimate?

𝑓 𝑡 ± Δ𝑡 = 𝑓 𝑡 ± Δ𝑡
𝑑𝑓 𝑡

𝑑𝑡
+
Δ𝑡2

2!

𝑑2𝑓 𝑡

dt2
±
Δ𝑡3

3!

𝑑3𝑓 𝑐1,2
dt3

• If we “truncate” the series after two terms we can rearrange to get
the “rise over run” approximation, the remaining terms represent the
error in our approximation.

• Now if we taylor expand the difference between the “+” and “-”
versions…

𝑓 𝑡 + Δ𝑡 − 𝑓 𝑡 − Δ𝑡 = 2Δ𝑡
𝑑𝑓 𝑡

𝑑𝑡
+
Δ𝑡3

3!

𝑑3𝑓 𝑐1
dt3

+
𝑑3𝑓 𝑐1
dt3

Taylor expansion

Two points to take away from the Taylor expansion

1. It shows that the error in the centered difference equations is
reduced/can give us an idea of what that error is

2. It introduces us to the idea that we can improve our approximations
by interpolating power series expansions

Exercise: write a function which takes the derivative of
a generic set of x and y values using central differences.
Test your function with values from the sin()
function

For an extra challenge, try to do this without any loops

How can we expand differentiation to a function with x,y and z values? What is
this operation called?

Numerical integration

•How can we determine the integral of a discrete
set of data (even when we don’t have a function

to describe it)?

• An integral represents the area under the curve

• Riemann sums approximate this area with rectangles (Area = height *
width), we can define the height of each rectangle by matching the
function value with the left side, right side or center of a rectangle.

Improving the approximation

We can divide the area up into
trapezoids

• This amounts to approximating
the curve with straight line
segments

• What is the area of a trapezoid?

Exercise: Write a function which computes the integral of a function
using Riemann sums (left, right). Use this function to compute

 sin2(𝑥) 𝑑𝑥
10

−10

Simpson’s Rule

• Going one step further, we can approximate the curve using quadratic
segments.

• The lecture slides describe Simpson’s rule using two different
formulas

• 𝑆𝐼𝑀𝑃 𝑛 =
2∗𝑀𝐼𝐷 𝑛 +𝑇𝑅𝐴𝑃 𝑛

3
 and 𝑓 𝑥 𝑑𝑥

𝑥1
𝑥0

=
ℎ

3
𝑓0 + 4 𝑓1 + 𝑓2

Applied Exercise

• Final exercise: Using data provided on course website, determine power produced by a
solar cell of unit-area 1m2 at angle 30° when coated with a double-layer antireflective
coating and with no coating.

• You may not use any of MATLAB’s built-in interpolation functions, derivative functions,
or integration functions (spline(), interp1(), trapz(), gradient() etc.)

• Recall that the area of a cell will scale with cos(theta)

• use the formula:
Power(lambda) = Irradiance(lambda) * Surface area * External quantum
efficiency(lambda) * 27% efficiency * Transmittance (lambda)

Applied Exercise

• First problem: our data doesn’t match up!

AM0vec = 1 x 1000 double EQE_cell = 1 x 1451 double DLARG(: , 7) = 30 x 1 double

Applied Exercise

• Let’s say we want all of our data to have 1 x 1451 points. How can we
improve our data to get there?

AM0vec = 1 x 1000 double

Applied Exercise

• This is the process of linear interpolation

(one way, at least)

Applied Exercise

• This is the process of linear interpolation

(one way, at least)

1) Approximate first derivative of function

Applied Exercise

• This is the process of linear interpolation

(one way, at least)

1) Approximate first derivative of function

2) For desired new point 𝑥(𝑛 + 𝛿) find
nearest neighbour 𝑥(𝑛) or 𝑥 𝑛 + 1 ?

Applied Exercise

• This is the process of linear interpolation

(one way, at least)

1) Approximate first derivative of function

2) For desired new point 𝑥(𝑛 + 𝛿) find
nearest neighbour 𝑥(𝑛) or 𝑥 𝑛 + 1 ?

3) Project 1st derivative at 𝑥(𝑛) into “dead
space” to retrieve 𝑥(𝑛 + 𝛿)

Applied Exercise

• We can perform this very useful procedure to very good approximation
using the derivative methods we just did! (see centered_diff_interp.m)

• NRMSE = 0.07% between this method and more sophisticated function!

Applied exercise

• Now our data is fixed, can multiply curves together to get true power per
wavelength:

Integrating (recall that Irradiance in W / m^2 / um) gives us ~983W.
Is this reasonable?
 - 983W * 0.27 * 2.277cm^2 / (100cm/m ^2) / 1.5 / cosd(30) = 0.046 W

Datasheet says we can expect 0.06W so pretty close!

