
January 16th 
Vectorization, Visualization and Numerical Differentiation/Integration 



Tutorial info & Contact info 

Hugh Podmore  Website 
podmore@yorku.ca nanosatellite.lab.yorku.ca/teaching/phys2030 

 

Tutorials will consist of 

• Some lecturing / review of course material. 

• A series of small worked examples and one “big” one based on recent 
course material. 

• A Q&A / help period. 

 

• Tutorials are 3 hours.  

mailto:podmore@yorku.ca
nanosatellite.lab.yorku.ca/teaching/phys2030


Starting problem – Matrix Multiplication 

• Compute the product of two matrices, C = AB where 

 

• 𝐴 =  
3 1 4
0 2 1
5 1 0

 • B=  
1 0 3
0 0 3
0 2 4

 

 



Vectorization 

• Matlab is built around PROCESSING VECTORS 

• Consider these two programs: 

 

 

 

 

 

 

 

 

 

 

• They do the same thing (which is…?).  Question: what’s the point? 

 

 

 

 

 

 

 

 

 

 

 

function [results] = 

two_powers_iterate(N) 

    tic 

 

    results = zeros(1, N); 

    for i = 1:N 

        results(i) = 2^i; 

    end 

 

    toc 

end 

 

function [results] = 

two_powers_vectorized(N) 

    tic 

     

    powers = 1:1:N; 

    base = zeros(size(powers)); 

    base(1:end) = 2; 

     

    results = base.^powers; 

     

    toc 

end 

 



Vectorization 

• For very large operations vectorization can be more efficient 
 (think N = 109 doubles * 4 bytes / double = 4 Gb of data) 

 

• Worth thinking about when 
processing large quantities 
of data.  

• A “full” image taken by JWST 
would be about 250Mb. 

-Something like SKA or ALMA…? 



Special Vector Syntax 

• Suppose we have two vectors x_vec, y_vec 

* :  x_vec*y_vec   vector/matrix multiplication (watch dimensions!) 

.*:  x_vec.*y_vec   per element multiplication (ie: *x1*y1, x2*y2…+) 

‘ :  x_vec’    x_vecT ie: transpose 

 

 

Many built-in Matlab functions support vector input.  Ex: cos() & sin(). 



   Vectorization Exercise 

• Exercise: Write a VECTORIZED function (no loops of any kind!) that 
does the following:  

Take a vector of numbers (in degrees),  

1. convert them to radians  

2. compute their sine values.   

3. get the absolute values and  

4. sum all these numbers together and return the result. 

 

Challenge: do it without using the Matlab functions abs() and sum() 

 



• We can quickly define generic functions using function handles “@(x)” 

xpts = -5:0.1:5; 

F1 = @(x) 5 .* exp(-x.^2); 

ypts = F1(x); 

 

• And Plot them using the fplot function 

plot(xpts,ypts,’.’); 

hold on 

fplot(F1,[-5 5],’r’); 

 

 

Function handles 



Important: This is just a fast way to define functions! Matlab treats 
these the same as functions made using the function command. 

 

 

• Using a function handle, make a function which displays “hello world” 
regardless of the input 



Visualization  

• There are a number of built-in 
functions for visualization in Matlab 

• Use the help function to see how 
each of the following is useful 

• plot 

• fplot 

• hist 

• rose 

• surf 

• contour 

• quiver 

• The peaks function generates 
a sample 2D scalar function 

 
• Try plotting peaks(50) with 

the surf and contour functions  



Exercise: Generate two 1x1000 vectors using rand(1,1000) and 
randn(1,1000).  

• Using one of the visualization functions from the previous slide, show 
the difference between the data generated by each.  

• Think of cases where rand and randn would be useful 



Numerical Differentiation 

•Question: can we take the derivative of a set of 
discrete data (without knowing the function 

beforehand)? 
 

 

 



  • First guess, simple “rise over run” 

 

•
𝑑𝑦

𝑑𝑥
≈
Δ𝑦

Δ𝑥
=
y2−y1

x2−x1
   

 

 

• This approximation is more 
accurate for closer points.  

• How do we know that? 

• Compare to the definition of a 
derivative: 

𝑓′ 𝑥 = lim
ℎ→0

𝑓 𝑥 + ℎ − 𝑓 𝑥

ℎ
 

 

• We need to choose 
which x-values we 
associate with the 
derivative; the left value, 
right value or midpoint? 



Exercise: Generate a set of points using the sin() function.  

Use the diff function to calculate the derivative. Compare your results 
to the expected analytical value (which is?...) 



Centered differences 

• We can improve our estimate 
by considering points to the 
left and right of the point in 
question   

• Why would this improve our 
estimate? 



𝑓 𝑡 ± Δ𝑡 = 𝑓 𝑡 ± Δ𝑡
𝑑𝑓 𝑡

𝑑𝑡
+
Δ𝑡2

2!

𝑑2𝑓 𝑡

dt2
±
Δ𝑡3

3!

𝑑3𝑓 𝑐1,2
dt3

 

• If we “truncate” the series after two terms we can rearrange to get 
the “rise over run” approximation, the remaining terms represent the 
error in our approximation. 

 

• Now if we taylor expand the difference between the “+” and “-” 
versions… 

 

𝑓 𝑡 + Δ𝑡 − 𝑓 𝑡 − Δ𝑡 = 2Δ𝑡
𝑑𝑓 𝑡

𝑑𝑡
+
Δ𝑡3

3!

𝑑3𝑓 𝑐1
dt3

+
𝑑3𝑓 𝑐1
dt3

 

Taylor expansion 



Two points to take away from the Taylor expansion 

1. It shows that the error in the centered difference equations is 
reduced/can give us an idea of what that error is 

2. It introduces us to the idea that we can improve our approximations 
by interpolating power series expansions  



Exercise: write a function which takes the derivative of 
a generic set of x and y values using central differences. 
Test your function with values from the sin() 
function 
 
For an extra challenge, try to do this without any loops 
 

How can we expand differentiation to a function with x,y and z values? What is 
this operation called? 



Numerical integration 

•How can we determine the integral of a discrete 
set of data (even when we don’t have a function 

to describe it)? 



• An integral represents the area under the curve 

 

• Riemann sums approximate this area with rectangles (Area = height * 
width), we can define the height of each rectangle by matching the 
function value with the left side, right side or center of a rectangle. 

 



Improving the approximation 

We can divide the area up into 
trapezoids 

• This amounts to approximating 
the curve with straight line 
segments 

• What is the area of a trapezoid? 



Exercise: Write a function which computes the integral of a function 
using Riemann sums (left, right). Use this function to compute 

 

 sin2(𝑥) 𝑑𝑥
10

−10

  



Simpson’s Rule 

• Going one step further, we can approximate the curve using quadratic 
segments. 

 

• The lecture slides describe Simpson’s rule using two different 
formulas 

 

• 𝑆𝐼𝑀𝑃 𝑛 =
2∗𝑀𝐼𝐷 𝑛 +𝑇𝑅𝐴𝑃 𝑛

3
 and  𝑓 𝑥 𝑑𝑥

𝑥1
𝑥0

=
ℎ

3
𝑓0 + 4 𝑓1 + 𝑓2  

 



Applied Exercise 

• Final exercise: Using data provided on course website, determine power produced by a 
solar cell of unit-area 1m2 at angle 30° when coated with a double-layer antireflective 
coating and with no coating. 
 

• You may not use any of MATLAB’s built-in interpolation functions, derivative functions, 
or integration functions (spline(), interp1(), trapz(), gradient() etc.) 
 

• Recall that the area of a cell will scale with cos(theta) 
 

• use the formula: 
Power(lambda)  = Irradiance(lambda) * Surface area * External quantum 
efficiency(lambda) * 27% efficiency * Transmittance (lambda) 



Applied Exercise 

• First problem: our data doesn’t match up! 

 

AM0vec = 1 x 1000 double EQE_cell = 1 x 1451 double DLARG( : , 7 ) = 30 x 1 double 



Applied Exercise 

• Let’s say we want all of our data to have 1 x 1451 points. How can we 
improve our data to get there? 

 

AM0vec = 1 x 1000 double 



Applied Exercise 

 

 
• This is the process of linear interpolation 

(one way, at least) 

 
 
 



Applied Exercise 

 

 
• This is the process of linear interpolation 

(one way, at least) 

 
1) Approximate first derivative of function 
 
 
 
 



Applied Exercise 

 

 
• This is the process of linear interpolation 

(one way, at least) 

 
1) Approximate first derivative of function 
 
2) For desired new point 𝑥(𝑛 + 𝛿) find 
nearest neighbour 𝑥(𝑛) or 𝑥 𝑛 + 1 ? 
 
 



Applied Exercise 

 

 
• This is the process of linear interpolation 

(one way, at least) 

 
1) Approximate first derivative of function 
 
2) For desired new point 𝑥(𝑛 + 𝛿) find 
nearest neighbour 𝑥(𝑛) or 𝑥 𝑛 + 1 ? 
 
3) Project 1st derivative at 𝑥(𝑛) into “dead  
space” to retrieve 𝑥(𝑛 + 𝛿) 

 



Applied Exercise 

• We can perform this very useful procedure to very good approximation 
using the derivative methods we just did! (see centered_diff_interp.m) 
 
 
 
 
 
 
 
 
 

 
 

• NRMSE = 0.07% between this method and more sophisticated function! 



Applied exercise 

• Now our data is fixed, can multiply curves together to get true power per 
wavelength: 
 
 
 
 
 
 
 
 
 
 
 
Integrating (recall that Irradiance in W / m^2 / um) gives us ~983W.  
Is this reasonable? 
 - 983W * 0.27 * 2.277cm^2 / (100cm/m ^2) / 1.5 / cosd(30) = 0.046 W 
 
Datasheet says we can expect 0.06W so pretty close! 


